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ON THE ASSESSMENT OF OPTICAL IMAGES

By P. B. FELLGETT anp E. H. LINFOOT
The Observatories, University of Cambridge
(Communicated by R. O. Redman, F.R.S.—Received 29 April 1954 )

In the formation of an optical image, each surface element of the object gives rise to a more or
less blurred distribution in the image surface, of total brightness proportional to that of the object
element. The image is the sum of these distributions in the appropriate sense: when the object is
coherently lit, the image is built up by adding their complex amplitudes; when the object elements
are regarded as incoherent it is the intensities which are added.

In both cases the image can be expressed as the convolution of the object with a spread function
which characterizes the optical system. In systems for which the spread function does not change
appreciably from one part of the field to another, the Fourier transform of the image is obtained to
a sufficient approximation on multiplying the Fourier transform of the object with that of the
spread function. More generally, this holds for any part of the field of a non-isoplanatic system
over which the changes in the form of the spread function are small enough to be disregarded; we
call such an area an ‘isoplanatism-patch’. Working over such an area, an optical system can be
regarded as a linear filter in which the Fourier components of the object reappear in the image
multiplied by ‘transmission factors’. These factors, first considered by Duffieux, depend on the
aperture and aberrations of the system, and in §2 they are evaluated in terms of an ikonal function.

The qualities required of an optical image are so varied that an assessment valid over the whole
range of practical applications seems out of the question. Two extreme cases are considered in the
present paper. In the first of these it is assumed that the aim of an optical design is to produce an
image which is directly similar to the object. This is appropriate when no process of image inter-
pretation or reconstruction is envisaged. In the second case, the aim is to produce an image
containing the greatest possible amount of information about the object, without regard to the
complexity of the interpretation processes which may be needed to extract it.

For the first case, a criterion of image fidelity is proposed in §2-4 which gives a numerical
measure of the resemblance of image to object in terms of the transmission factors of the optical
system.

In the second case, assessment is based on the information content of the image in Shannon’s
sense. This depends not only on the transmission factors of the system but also on the statistical
properties of the presumed object set and of the unpredictable fluctuations which necessarily
y disturb observation; the analysis is carried through in §3.

In §4 the assessment of optical images is discussed in terms of these two criteria.
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1. INTRODUCTION

The difficulties in formulating a satisfactory assessment theory of optical images are in
large measure due to the wide range of purposes for which optical systems are used. It is
only to be expected that the qualities which an image is required to have will differ, or will
have different emphasis, in different applications; and a change in aberration balancing
which improves an optical system for one purpose may well make it worse for another. It
seems hardly reasonable, therefore, to expect to be able to define a unique measure of image
quality; the most that one can hope to do is to devise measures which are each satisfactory
over a wide range of applications. Such measures will be the more intelligible if they re-
present some simple physical property of the image; if they are to be susceptible to mathe-
matical analysis they must be precisely and objectively defined ; and if they are to be useful
in the design of optical systems of practical interest, they must be of a simple analytical form.

The most general description of the purpose of an optical instrument is perhaps that it
is to give information about the object. If the information is to be immediately available,
this means that the image should resemble the object as closely as possible, so that it can be
treated simply as a reproduction of the object. Any optical differences between them, other
than change of scale, will then be regarded as image defects. A corresponding theory of
image assessment will aim at a quantitative estimate of the similarity between object and
image, and this estimate can be regarded as a measure of the amount of information that is
explicitly displayed in the image.

Sometimes, however, it may be required to extract all the information that is implicit
in the image without regard to the possible complexity of the interpretation process.
Although such cases are less common, they are often important, since the requirement will
tend to arise in connexion with photographs which it would be difficult or impossible to
repeat. Photographs of a rare astronomical event are an example. Moreover, interpretative ,
processes of a kind are inevitably introduced whenever, as is common in scientific work,

“photographs are measured objectively instead of being looked at (cf. Fellgett 1953, §3).
In these circumstances it is no longer a prime necessity that the image should resemble the
object, and the quality of an image is more appropriately assessed by the amount of implicit
information which it contains and which can be made explicit by a suitable interpretation
process.


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ASSESSMENT OF OPTICAL IMAGES 371

A particularly interesting example of the way in which improved performance may
sometimes be obtained by dropping the requirement of similarity is provided by the ‘holo-
grams’ proposed by Gabor (1949) for electron microscopy, in which the process of image
interpretation, or ‘reconstruction’, is carried out by means of diffraction.

The amount of information implicit in an image evidently depends in an essential way
on the accuracy with which the intensity distribution over the image can be measured. In
practice, the accuracy of such measurements is limited by the presence of random irregu-
larities in the image itself. In photography these arise mainly from the granularity of the
emulsion; in astronomy there is also a contribution from atmospheric turbulence (‘seeing’).
Even in the absence of disturbances of this kind, there would always remain the fluctuations
resulting from the quantum nature of the light itself. That this fundamental limit is of
practical importance has been demonstrated by Rose (1948) and vividly illustrated by him
in six pictures (Rose 1953) taken at different brightness levels which are evaluated in
terms of the number of photons used by the light-sensitive receiver.

When similarity of image to object is not the overriding consideration, aberrations are
only to be regarded as harmful in so far as they cause loss of information; the loss of simi-
larity alone could be put right, as in Gabor’s holograms, by a suitable reconstruction.
Such reconstruction may increase the effects of inaccuracies in the measurement of the
original image, and this interaction between interpretation processes and the errors of
measurement can be regarded as the real source of the loss of information in an aberration-
loaded image.

In the present paper, optical images are considered from the two points of view just
described and corresponding assessment theories are developed.

Section 2 develops systematically the Fourier treatment of optical imaging. The full
importance of this method, which was foreshadowed by Michelson 50 years ago, was first
brought out by Duffieux (1946), who expressed the properties of an optical system by means
of its transmission factors for the Fourier components of the object. As Elias, Grey &
Robinson (1952), among others, T have pointed out, this approach provides a link between
optical theory and the fruitful ideas and methods which have been developed during the
last 30 years in connexion with linear wave filters. In §2-4, a quantitative definition of
image fidelity is introduced.

In §§3-11 to 3-13 an outline is given of the concepts of optical noise and information ; and
a more detailed analysis follows in §§ 3-2 and 3-3, leading to the calculation in § 3:233 of the
information content of an optical image under prescribed conditions.

Section 4 discusses the two types of image assessment which correspond respectively to
the fidelity evaluation introduced in § 2-4 and to the evaluation of information content made
in § 3-233. As already explained, the first assessment is appropriate when the aim is to obtain,
without any interpretation process, the greatest possible similarity between image and
object; the second when information implicit in the image is to be extracted by reconstruc-
tion processes.

T A valuable paper by Blanc-Lapierre (1953) deals with the same topic; see also Gabor (1952).

46-2
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2. TRANSMISSION FACTORS AND THE FIDELITY OF OPTICAL IMAGES

1. Optical images and Fourier transforms

Let (x,y) be scale-normalized co-ordinates in the object surface S of an optical system
(see figure 1) and (£, 7) scale-normalized Cartesian co-ordinates in the exit pupil. We can
define a set of co-ordinate numbers (x’, ') in the image surface " of the system by first
assigning to the Gaussimage of the object point (x, y) the co-ordinate numbers (x'==x,y =y).
It is convenient to choose the scale normalizations so that, near the optic axis, (x,y) agree
with the (small) angular off-axis displacements in radians of the point (x,y) in the object
surface, while (£, ) agree with the (small) angular off-axis distances of the point @ = (£, 7)
in the exit pupil as seen from O’.

i }/ /
—F
T ki

object
surface f

Ficure 1

Let the total power of the radiation reaching the image surface from a surface element
dxdy situated at (x,%) in the object surface be o(x,y) dxdy. Because of aberrations and
diffraction, this energy is spread out in the image surface S’ over a region surrounding the
point (x, ) in this surface, and the intensity contribution d/(x,y’) received from the element
dxdy at an arbitrary point (x’,y’) of " can be written in the form

dI(x',y") = o(x,y) w(x',y"; x,y) dxdy, (2-1)
where [[ weysmpas =1, (22

If the object is incoherently lit, or is self-luminous, the total intensity /(x’,y’) at (x, %) in
the image is the sum of the intensity contributions (2-1) from all the elements dxdy of the
object surface, and if ¢(x,y) be set equal to zero everywhere outside the working field,

we can write ©
16,9) = [ otwy) wlw,y's 2,9) dxdy. (29
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In an actual system, the shape of the spread function w(x’,y’; x,y) varies only slowly as
(x,y) explores the working field in S. More precisely, the working field can be divided up
into patches, each large compared with the size of the finest detail which can be resolved,
with the property that in each patch 4 we can write

w(x',y's % y) = wy(x' —x,y"~y) (2:4)
to a sufficient approximation. A patch with these properties is called an isoplanatism-patch
of the system. A system is called isoplanatic when the whole of its working field is an iso-
planatism-patch.

When the system is isoplanatic, equation (2-3) takes the form

16,9) = || o(ey) w(x' —x,y'—y) dxdy. (2:9

If we define, by means of the equations
e(u,v) = ”W o(x,y) e~ 2mtw) dx dy, (2-6)

7(u,0) = ffw w(x,y) e~ 2wt dx dy, (2-7)

the functions ¢(u,v) and 7(u,v) of the new variables u,v, and apply to (2-5) the Fourier
product theorem and the Fourier inversion theorem, we obtain at once

f f ® I(x, y) e-2riw ) dxdy = o(u, 0) 7(u, 0), (2-8)

I(x,y) = ﬂm e(u,v) 7(u, v) 2@+ dy do. (2-9)
Here (u,v) are regarded simply as spatial frequencies and the equation
o(%,y) = ffw e(u,v) 2w +w) dudo, (2-10)

obtained from (2-6) by Fourier inversion, is a representation of ¢(x, ) in terms of its ‘spatial
spectrum’, which is described by the spectral function ¢(«,v). Equations (2-9) and (2:10)
show that the ‘Fourier element’ ¢(u,v) e?"+®)dydy in the object appears in the image
multiplied by the ‘transmission factor’ 7(u, v), where 7(«,v) is the Fourier transform of the
spread function w(x,y), so that, by (2-2), 7(0,0) = 1 and | 7(x,v) | <1.

If we use F[ f] to denote the Fourier transform of f in the sense of (2-6) and F*[g] to
denote the inverse Fourier transform of g in the sense of (2:10), the last five equations,
together with the inverse of (2:7), can be written in the more compact form

¢(u,v) = Flo],  o(x,y) = F*[e], (2-11)
7(u,v) = Flw], w(x,y) = F*[r]. (2:12)
6(u0) 7(u0) = FI],  I(x,y) = F*[er], (2-13)

while Fourier’s inversion theorem can be written as the operator equation

FF* — 1. (2:14)
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If the object is coherently lit, the analysis is changed only in that it is now the comples
displacement contributions in the image surface which have to be added. Thus, if the

complex function E(x, y) describes the phase-amplitude distribution in the coherent object
and if g(x",y’; ¥, y) describes the normalized complex displacement at (x’,y’) in the image
surface due to a point source of unit strength and zero phase situated at the point (x,y)
in the object surface, then the image is described by the complex distribution

Bi,y) = [[” Bley)alv,v's ) drdy (2:15)
and the intensity distribution in the image is
Itx',y) = | D(x,y) 2. (2:16)
From the definitions of g and of w it followsT that
w(x',y's %,y) = [g(¥',9'; % 9) |* | (2:17)

When the system is isoplanatic over the area occupied by the object, g(x',¥’; x,y) takes
the special form g(x'—x,y"—y), (2:15) becomes

Biw,y) = [[” Bivy) el —xy'—y) drdy, (2-18)

and we obtain in place of (2-11) to (2-13) the equations

&(u,0) = F[E], E(x,y) = F*[¢], (2:19)

7(u,0) = Flgl,  g(xy) = F*[7], (2-20)

&(u,0) 7 (u,0) = F[D], D(x,y) = F*[¢7], (2:21)

while (2-17) becomes w(x,y) =|g(x,y)|% (2-22)

From the spectral representations
E(x,y) = F*[£], D(x,y) = F*[é7] (2-23)

of the object and image given in (2:19) and (2-21), we see that 7 («,v) is the cofactor with
which a Fourier element & (u,v) e?mi+2 dudv of the coherent object reappears in the
image; it is the transmission factor of the optical system for coherent objects (Duffieux 1946).

2:2. Transmission factors and ikonal function

The results obtained so far have been derived without assuming any specific mechanism
of image propagation; they depend only on the assumptions that the radiation from each
element dS of the object is spread out in the image surface according to a fixed distribution
function, and that the contributions from different parts of the object are added as complex
amplitudes in the coherent case, as energies in the incoherent case. They take on a new
significance when combined with the equations which express, in the Huyghens approxi-
mation, the relations between the spread function g(x’,y’; %,y) and the ikonal function of
the optical system.

+ Not quite trivially, since an infinitesimal surface element of unit total power cannot be represented by
a single wave train.
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A point source of unit strength and zero phase, situated at (x,y) in the object surface,
produces at (x',y) in the image surface a complex displacement proportional to

d\ (%95 x,y) = HCXP {—ike(E, 7; x,y)} eFEW —010 -0l dE dy, (2-24)

where A denotes the wave-length, & = 27/A and the integration is over the (§,#)-region
defined by the exit pupil. ¢(§,7; x,y) is an ikonal function of the system and

CXp{—-*lke(g, B x’y)}
measures the complex displacement produced by the point source (x,y) in the object

surface over that part of a spherical reference surface, centred at (x,y) in the image surface
and with radius 0’0" (see figure 1), which approximately coincides with the exit pupil.{
When the imaging is isoplanatic as (x,y) explores the object, ¢(§, 7; x,y) takes the special
forms e(§,7) in the coherent case, ¢(£,7) +f(x,y) in the incoherent case, where f(x,y) is
a smooth function of ¥ and y.

In the special case where the exit pupil is circular, it has often been found convenient to
replace (£,7) by co-ordinates («’,v") renormalized to make the circle '2+v"2<<1 represent
the exit pupil and to express this ikonal ¢ as a function of #’,v" and the normalized off-axis
angle O of the point (x,y) (cf. Linfoot 1955, § 3-1). In the present case, where the exit pupil
is not restricted to be circular, or even to be a single area, it is more convenient to use a
different renormalization, introducing the new co-ordinates «”, " in the exit pupil by means

of the equations E= ", 5= (2-25)

where, as before, A denotes the wave-length of the light.
Equation (2-24) then gives, with a suitable normalization of g,

gy’ %, y) = ‘Jfl‘*ffm EU" 0" x,y) 2w -+ W -l dy" dp”, (2-26)
where E(u",v"; x,y) = exp{—ike(Au",A0"; x,y)} (u",v") <A
=0 (u",0") ¢, (2-27)

and «/ is the (u”,v")-region which represents the exit pupil.

In the coherent isoplanatic case e(£,7; x,y) = ¢(£,7), and (2-26) takes the more special
form

¥y s xy) =g —xy —y), (2-28)
where g(x’ y) — idl_ ffw @@(u”, 'I)”) e2mi@'x+v'y) dg” do” = ldl—%F*[é@] (2.29)
and é() — ég(ull, vll) — ég’(ull, vll; x, y) — exp{__ike(/lull’ /Ivll)} (uII, vll) CM
y o (2-30)
=0 (u",0") A

In the incoherent isoplanatic case, ¢(,7; x,y) = e(£,7) 4+ f(x,y) and (2-28) is replaced by
8 y's % y) = exp{—ikf(xy)}¢(* —x,¥ ~y). (2-31)

t Variations in amplitude on this surface are taken care of by the imaginary part of e(£, 7; x, ). In the
present paper we assume that these variations are negligible and that ¢(£, 7; x, y) is real.

I f(x, y) represents a phase shift, constant over the whole reference sphere but different at different points
of the image.
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Applying Fourier’s inversion theorem to (2-29), we obtain
& (uv) = | A'Fg], (2-32)

from which, on comparing it with (2-20), we see that the transmission function 7 (u,v) for
extended coherent objects is, apart from a constant factor | 27| %, identical with & (x, v), and
that #”,", which were introduced as normalized co-ordinates in the exit pupil, can be
identified with the spatial frequencies %, v in the image (2-15).

This identification appears the more natural in view of the relation, familiar in elementary
diffraction theory, between the angle of an obliquely diffracted beam and the spatial
frequency in the structure of the surface from which it is diffracted. In the case where the
image surface is part of a sphere centred at 0", it is easily seen{ that radiation from the
vicinity of the point #” = u, v” = v in the exit pupil corresponds to a spatial frequency (u,v)
in the image structure. That the same is true for any smooth receiving surface lying in the
image layer of the optical system follows from the properties of the ikonal function
e(&, 75 x,y), which automatically provides phase factors covering the generalization.

Putting the results together and writing generally C[%] for the autocorrelation function

f f ) h(u',v") h*(u' —u,v"—v) du’ dv’, where 2* denotes the complex conjugate of /, we obtain

for the imaging of a coherent isoplanatism patch the equations

E(x,y) = F*[¢], (2:33)
D (x,y) = F*[£7] = || F*[6&], (2:34)
Ie,y) = | D(xy) |2 = | o | F*(CLES]), (2:35)
and for the imaging of an incoherent isoplanatism patch the equations
o (%, y) = F*[¢], (2:36)
I(x,y) = F*[er] = | |1 F*[eC[&]]. (2-37)

In the first case the transmission factor
7 =7(u,0) = || (u,v) = || Fexp{—ike(Adu,v)} (u,v) <
=0 (u,0)¢H, (2-38)

where ¢(&, 7) is the ikonal function of the isoplanatism-patch; in the second case this ikonal
function has the form e(&, 7) +f(x,y) and, by (2:12), (2-22) and the Wiener-Khintchine
theorem, the transmission factor 7 = 7(u, v) satisfies the equation

7(u,v) = »t-!;lﬂff:cf(u’, V) E* (W —u,v"—v) du' dv' = | | ~1C[£], (2-39)

and from this it follows at once that | 7| <7, for all (u,v), where 7,(«,v), defined by the

equations 1 (w) cst
7o = Clka], Kot= Ko(u,0) :{0 Eu: U% d.of

is the transmission function of an ideal aberration-free system of aperture .27.

1 Linfoot (1946), equation (2-14).
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Because ¢(£,7; x,y) is a slowly changing function of (x,y), the above analysis can be
applied without essential change to the approximate discussion of problems of resolution
and of information content in images by non-isoplanatic systems. In fact, to each point
(x,y) of the working field of an optical system corresponds a neighbourhood R, , called
the isoplanatism-patch belonging to (x,y). R, ,is the set of points (x",y’) near (x,y) at which
& (u,v; x’,y’) may be taken as effectively equal to & (u,v; x,y) (or, in the incoherent case,
to & (u,v; x,y) multiplied by a smooth function of x,y) for all values of (u,v). Because
e(£,7; x,y) is a slowly changing function of (x,y), R, , is large compared with the finest
detail in the image; its precise dimensions depend on the analytical interpretation given
to the words ‘effectively equal’ in the previous sentence.

In each R, , the image of an extended coherent (incoherent) object is essentially the con-
volution of its phase-amplitude (intensity) distribution with the phase-amplitude (intensity)

Kr
A x [t —(u,v)]
%4
N P
("u/r—v)

FIGURE 2. o/x [&— (u, v)].

distribution in the image surface corresponding to a point object at (x,y). The latter is
essentially the Fourier transform of the aperture-aberration function & (u,v; x,y) of the
system in the first case, and of the (u,v)-autocorrelation function of & (u,v; x,y) in the
second case.
2-3. Frequency-boundedness of optical images

From (2-34) and (2-38) it follows at once that the frequency (u,v) of every non-null
Fourier element of ﬁ(x, y) lies in of. This is expressed by saying that the image of a coherent
object E(x, y) is frequency-limited to o . |

An analogous result holds for incoherent objects. We can write (2:39) in the more
explicit form

1 . ' / . ’ ’ ’ 3., .
rw0) = 17 f wa_(u’mexp{ﬂk[e@u ,A0) —e(Aat’ + A, Ao’ +A0) [y du’ do’, (2-40)

where the domain of integration arises in the manner illustrated in figure 2. Evidently
7(u,v) can only differ from zero when this domain is non-null; that is, when (u, v) satisfies

the condition ol X [ — (1,0)] =0. (2+41)

Let # = Z () denote the set of values of (u,v) satisfying (2-41); then 7(u,v) = 0 for
(u,v) ¢ F and (2:37) shows that the image I(x,y) of an incoherent object is frequency-limited to F .

Vor. 247. A. 47
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If.e/ is the circle u? 4 v2 < a2, then F is the circle % +v? < 442, and the image of an incoheren
object may contain frequencies twice as rapid as those which can appear in the complex
displacement image of a coherent object by the same system.

o/ and & are bounded regions in the (u, v)-plane; thus the images of coherent and of incoheren:
objects are frequency-bounded. It is not difficult to show that the same is true of the images of
partially coherent objects.

2-4. Fidelity of images
An intuitively acceptable and analytically convenient measure of the extent to which the
image resembles the object can be defined in terms of the root mean square (r.m.s.) distance

between the functions which represent them.
Let f,(x,¥), f5(x,y) be two (real or complex) functions whose total powers

PO =[] 1 kardy, P =[] falrdxdy (2-42)
are both finite. Their r.m.s. distance d( f}, f5) =0 is defined by the equation
Cfinf) = [ 1/~ dxdy. (2:43)
Evidently P(f) =d*(f,0) and P(f,) =d*f,,0).

The fidelity defect of an optical image can now be defined as the normalized mean square
distance between this image and the corresponding object. More precisely, if /| represents
the object and f, the image, we define the fidelity defect of the image as the quotient

et gy Iy (2-44)
w00 T o

In the case of an incoherent object o(x, y) and its image /(x, y), the mean square distance

d2(a, 1) :ffl(a—l)zdxdy

:ffw | 7e—¢|?dudv, (2-45)

by (2-36), (2:37) and Parseval’s theorem,

:ffyl 1—72]e |2dudv+(ff:—fff) | € |2dudo, (2-46)

while d%(z, 0) =ﬁ°° 2 dxdy =ﬂ°° e |2 dudv. (247)
Thus the fidelity defect of the image is

H e |2 dudo ff |1—7 2| ¢|2dudo

1—30Z E—— :

ffjow]efzdudv Jf:lelzdudv

(2-48)
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In the case of a coherent object E‘(x, y) and its image DA(x, y), (2-48) is replaced by the

expression
ff |€|2dudv ff [1—7]2|€|?dudv
1 -2 412 : (2-49)

J:fw |€|2dudy wa |€|>dudy

Ineach of (2-48) and (2-49), the first term depends only on the aperture of the optical system,
while the second term depends on both aperture and aberrations. In the coherent case (2:49),
the second term vanishes when the aberrations are zero; and we can regard the two parts
of (2-49) as the respective contributions to the fidelity defect from the frequency cut-off
in the image through the finite aperture.s and from the aberrations. In the incoherent case
(2:48), |7|<1 for (u,)==(0,0) and the second term represents the contribution to the
fidelity defect from the ‘damping’ of the higher object frequencies which is enhanced by
aberrations, and accompanied by phase distortion when aberrations are present, but which
occurs even in the absence of aberrations; while the first term represents the contribution
from the frequency cut-off (this time to #) in the image through the finite aperture <.

It is of fundamental importance in this connexion that object frequencies outside a certain
finite region (&7 or &) in the (,v)-plane do not appear at all in the image; two object
functions ¢, s, whose Fourier transforms differ only outside this region have identical
images. In fact, the image of an incoherent object ¢ only contains such information about
o as can be expressed in terms of the ‘7, cut-off” of ¢, namely, the function

1 (u,v) =t
0 (u,v) ¢,

0" = F*[1¢]; 71,=Clks]; ko =ka(u,v) = { (2-50)
that is to say, the image of ¢ through an ideal aberration-free system of the same aperture
< as the actual system.

A result of a more special character which follows from (2:46) is that the mean-square
distance between an incoherent object ¢ and its image can never fall below

(Ui“‘ffy) | ¢ |2 dudo.

3. NOISE, ABERRATIONS AND INFORMATION

3-1. Introductory

The term ‘noise’ is already used in many fields of physics to denote those fluctuations
which in the circumstances of a given experiment must be regarded as unpredictable in
detail and therefore a bar to perfectly exact measurement. No apology seems necessary,
therefore, for using it here to denote such fluctuations affecting an optical image.

Every optical image is affected by noise; as already pointed out, the quantum nature of
light itself renders the production of noise-free images impossible in principle, and the
practical limitations of the eye or photographic plate give a noise level that is substantially
greater than this fundamental limit.

In this introduction, comprising §§ 3-11, 3-12 and 3-13, we set out briefly and without
proofs the ideas and results underlying the main discussion. which begins with § 3-2.

47-2
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3-11. Distinguishable and indistinguishable images

Let the aperture .« of an optical system be enclosed by a rectangle # with sides parallel
to the (u,v)-axes and corner points (,v) = (-, /), as shown in figure 34. If a point
object situated at (x,7) be imaged without aberrations through the rectangle #, its dif-
fraction pattern is defined by the (normalized) complex displacement

8o(x',y'; %, y) = sinc [20(x" —x) ] sinc [26(y" —y)], (3-1)

sin 7t

where sinc ¢ stands for .1 The corresponding intensity distribution is

wo(x'yy'5 %,y) = sinc? [2a(x’ — )] sinc? [28(y' —9)]. (3:2)
\Y

1/2a

(— a~8) (8 )
(a) (b)

(a) The (u, v)-plane can be identified both with (b) The (x, y)-plane provides a map of
(u", v")-space in the exit pupil and with both the object and image surfaces.
frequency-space in the object and image
surfaces.

F1GUrE 3
It will be seen that g,, w, vanish at all the points
r s .
’ — o ’ — e 3.
=2ty Y y+ 25 (r,s integers) (3-3)

for which (r,s) = (0, 0), while for (r,s) = (0,0) they have the value 1. These points mark
the corners of the lattice rectangles in figure 35.

Now let E(x, y) be the phase-amplitude distribution in a coherent object filling the region
A(—a<x=<a, —b <y <b) in the object surface, and let D(x,y) be its image through the
aperture Z. We take ‘sampling points’

ros

PTS = (xrﬁys) = (_2—52) 53) (34)
in the image surface and denote by D, the value of D(x,y) at F,.

+ This notation is due to Woodward (1953).
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By the two-dimensional form of Shannon’s sampling theorem,t any function f(x,y)
which is frequency-limited to the rectangle # (—a < u <a, —f < v <f) satisfies the identity

S(x,y) = 2f(2 2/5,) sinc [Za(x — ~—):| sinc [2ﬂ(y— 2?)] (3-5)
D(x,y) is such a function; therefore by (3-1), (3-4) and (3-5)
D(x,y) = 2 D, sinc (2ax—r) sinc (2fy —s) (3-6)

for all values of x,y. Interpreted physically, (3-6) expresses D(x,y) as a sum of the image
displacements corresponding to a rectangular lattice of independent point sources in the
object surface.

When P, is outside 4, D,, is very small and consequently D(x, y) is characterized to a good
approximation by its values at the finite set of | 4 | | # | sampling points lying in the region 4.
It can be verified that the Fourier transform 7€ of D(x,y) is effectively frequency-limited
to 4 in the sense that the ‘overspill’

(”:“HA) | (7] |2d’?dy (3-601)

is small. From this it results that 7¢ is sufficiently well characterized by the finite set of
| 4| | # | sampling points

qu = (up, Uq) = (2%, é%) ( b q integers) (3-602)

which lie in the region # of the frequency plane, the approximation being of the same order
as that in the representation of D(x,y) by the function

D, (x,y) = gA D, sinc (2ax—7) sinc (20y —s). (3-603)

How small the expression (3-603) can be depends on the areas 4, % ; more particularly, it
tends to zero as the product d,dy of the diameters of the largest circular areas contained
respectively in 4 and & tends to infinity, and this point is taken up later (§§ 3-22, 3-23).

Because the accuracy with which D(x,y) can be measured is limited by noise, the statis-
tical effect on D(x,y) of replacing the sampling values D, outside 4 by zero is negligibly
small if d, is sufficiently large compared with the size of the resolution limit of the system.

Suppose now that {D(x,y)} is a statistical set of functions, frequency-limited to % and
effectively limited to 4, which represents a set of images together with noise. We may call
D(x,y) and D, (x,y) effectively indistinguishable from each other when

(D D) = [[” | DD paxay<[[” [D=D,F = ¥,

where bars denote statistical means over the full set {D(x, y)}, D, denotes the function D as it
would be without the noise and N is the statistical mean total noise power. The statistical
mean

N 1
“d*(Dy, D) (D, D ff ID(A)“*DI dxdy = ff ID(A) Dl dxdy _Tg—ll’ y

1 Shannon (1948, theorem 13). A proof of the form used here is given incidentally in §3-21 below.

[ D, [
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Because D is effectively limited to the image patch 4 (in the sense of § 3-22 below), this
sum is small compared with the statistical mean noise power N provided d,dy is sufficiently
large compared with unity. In these circumstances we may replace the statistical set
{D(x,y)} by a new statistical set {D,,(x,y)}, obtained by grouping together those members
of {D(x,y)} which have identical sampling values D,, in 4 and then replacing each group
by the corresponding D, (¥, y) with the appropriate probability weighting. The sampling
points P, in 4 are | A || % | in number, where | 4| = 4ab and | % | = 4af are the areas of
A4,% in (x,y)-units and («,v)-units respectively, and the final conclusion is that, provided
d,dg is large enough, a set of | 4| |# | parameters D,, with known joint probability dis-
tribution may replace the original set {D(x,y)} for the purpose of calculating the effective
number of distinguishable images contained in the set.

3:12. Information in an optical image

Shannon has developed a quantitative theory of information which is in strikingly close
agreement with ordinary intuitive notions and has shown that only one mathematical
definition of quantity of information is possible without violating the conditions which
these notions impose. In the case where the effect of an observation is to single out one
from a number N of distinguishable states, all equally probable a priori, the amount 4 of
information derived from the observation is given by the equation

h =log N. (3-7)

Changing the base of the logarithm introduces a multiplicative factor; to take the logarithm
to base 2 is equivalent to choosing as unit of information the binary unit or ‘bit’, which is
the amount gained in an observation which results in the selection of one from two equally
likely possibilities. For example, the answer to a ‘yes or no’ question provides one bit of
information if (and only if) neither answer was more to be expected than the other.

Information is additive only when the result of a first observation leaves the expected
result of a second unchanged; being told what one already knows adds little information.
Thus, repetition of a measurement only adds information in so far as it reduces inaccuracy.
In this case, the second measurement gives less information than the first, but if the first one
is of very low accuracy the difference is small, because the first measurement hardly changes
the expected result of the second.

Suppose now that, at each sampling point (3-4) in 4, only m discrete values of D, can be
distinguished. It will appear in § 3-13 that a situation essentially equivalent to this results
from the limitation on accuracy of measurement which necessarily follows from the presence
of noise. Then the number of distinguishable image states is

2
n=m4®|

and if all these states can be regarded as independent and equally probable, the quantity
of information in the image is, on Shannon’s definition,
H' = |A4||% |logm. (3-8)

For the images formed by the system with aperture .27, smaller than %, the representation
(3-6) is still valid, but it is no longer possible to regard the D, as completely independent;
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there is now a certain correlation between the values of different D,,, so that a knowledge
of some of them produces an expectation of the values of the rest. We might expect this to
reduce the amountofinformation in the image;itwill appear later (see § 3-2) thatthe amount

is in fact reduced to
H=|A4|||logm. (3-9)

Aberrations, which broaden the diffraction patterns of point sources by &7, may strengthen
the correlations between the sampling values in the image; they do so in the image of an
incoherent object, and this strengthening of correlations reduces still further the amount of
information; but in the image of a coherent object the aberrations do not increase the

average correlation between different parts of the image ﬁ(x, y),and the amount of informa-
tion is left unchanged (see § 3-231). Gabor’s well-known method of image reconstructiont
can be related to this last fact, since it depends on the harmlessness, so far as information is
concerned, of the large amount of image-spread produced by strong defocusing of a coherent
image.

3-13. Distinguishable levels at a sampling point

When a light-sensitive receiver is used to measure the brightness level at a sampling point
in the image of an incoherent object it may, of course, indicate any brightness level between
zero and its saturation value; but if two ‘readings’ are very nearly equal the difference
between them may cease to have any appreciable significance in view of the inaccuracies of
measurement induced by the noise which, as we have seen, must always be present.

An idea of the consequences of this may be gained by considering the particular case
where the noise (defined as the actual intensity minus the statistical mean intensity) has, at
the sampling point P, an effectively Gaussian probability distribution with a given mean-
square value n%. If what was known before the experimentindicated a Gaussian probability
distribution at P for the ‘signal’ (in this case the actual intensity) with mean-square devia-
tion s%, then a result of Shannon (1948, p. 63, theorem 17) shows that the (mean) information
gain} on making the measurement at P is
s2+n?

)

.

k= }log

Comparison with (3:7) shows that this is the same as the information gain when the effect
of the observation is to select one out of m equally likely discrete values or ‘levels’, where

_ (32+n2)é' (3.10)

This result is intuitively acceptable, since it implies that the single measurement has reduced
the uncertainty in the ‘signal’ value by a factor whose statistical average tends to s/z when
the noise 7 is small compared with s and to 1 when /s is large.

T Gabor (1949). ,

i When random processes are involved, so that to a given measured ‘signal’ there does not correspond
one unique intensity in the object, the information gain on making a single measurement must itself be
regarded as subject to statistical fluctuations. When one speaks of information gain in these circumstances,
it is the statistical mean information gain which is ordinarily meant (cf. Woodward 1953, p. 54).
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A similar, though not identical, result holds for the distinguishable complex values of
D(x, ¥) at a sampling point of a coherent image. In this case
SZ—I—?lZ
- nz .

(3-11)

For the immediate purpose, the important point is that in both cases the value of m at a
sampling point is finite in any realizable experiment.

If m is the same at every sampling point P, in the image patch 4, then the amount A of
information in the image is logm multiplied by the number of independent parameters
required to describe the image values at the sampling points.

3:2. Nousy objects and their images
3-21. Analytical representation of optical noise

Inasmuch as noise represents unpredictability from the point of view of the observer,
it is represented mathematically by a statistical set of functions having the maximum
unpredictability (in the sense of maximum entropy) that is possible under the constraints
which represent the observer’s previous knowledge.

When all that the observer knows is that the noise originated in the object patch 4 and
has reached the image surface through the optical system, the entropy-maximizing problem
can be attacked, and a solution obtained in certain useful cases, by an application of the
sampling theorem.

A function f(x, y), confined to a rectangular area 4 in the (x, y)-plane with corner points
(x,y) = (+a, +-b) and of integrable square over this area, possesses in A the Fourier

expansion
P 2 0y, €XP {21!1(‘[) —I—qg)} (3-12)
Qg 2
where @, denotes the point (,, v,) = ( éb qu) in the frequency plane. The Fourier coefficient
%, is given in terms of the Fourier transform
e(u,0) = F[f] = ff e~ 2mi+w) f(x, y) dxdy (3-13)
4
by means of the equation Upg = Tflﬂ €pg> (3-14)
where ¢, stands for ¢(u, v,), the value of ¢(u, v) at the ‘sampling point’ @,, in the frequency
plane.
It follows that when f(#, y) is confined to 4 we can write
v 1 px qy)} 3.
Slx,y) —Q'Zq |A|€1"Iexp{2m( T35 (3-15)
Then e(u,v) = ffAe'Z"i("“”y) ) f(x,y) dxdy
. p
= %epq | 4] ff exp {—2771[(u—-2—a-) x4+ (v——m) y]} dxdy
= 3 €,,8inc (2au—p) sinc (2bv—q). (3-16)
Qpq

1 This term has the same meaning as ‘ensemble’ in Shannon’s paper (1948).
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If 4 has corner points (x,+a, y,+b), €(u,v) is e~ 27020 times the right-hand side of (3-16)
and each ¢,, is multiplied by e~ 27iwsot o,

Equation (3-16) establishes Shannon’s sampling theorem for the function ¢(%, v), which
by Fourier’s inversion theorem is frequency-limited to 4. It asserts that when f(x,y) is
confined to 4, ¢(u,v) = F[f] has the form of an interpolation function and is completely
determined by its values ¢,, at the ‘sampling points’ @, correspondmg to 4.

By Parseval’s theorem and (3-16)

~ 0 1
JJ 1t axdy = [ et ) Pudo = 20 3 e (317)
The condition that fshall be real is equivalent to the condition
e(—u, —v) = e*(u,v), (3-18)

or again, by (3-16) and the orthogality of the functions sinc (2au — j)) sinc (2bv—gq), to the
condition 6,y =, (—w<pg<c0). (3-19)

In the case of an incoherent object we identify f with the intensity distribution ¢(x,y);
then f is everywhere real and (3-18) holds. In the case of a coherent object we identify f

with the complex displacement function E(x, y), and e(u,v) = F [E] is no longer restricted
by (3-18). Partially coherent objects lie outside the scope of the present paper. There is
no simple property of e(u,v) which corresponds, in the incoherent case, to the con-
dition o> 0.

Coherent case. A statistical set of objects confined to 4 is represented by a set { f(x,y)} of
functions confined to 4, together with a probability-density function defined in some way
over the set.

As is well known from the theory of the microscope, spatial frequencies finer than {4 in
a (coherent or incoherent) object are not transmitted through an optical system. This
means that the images of two object distributions f(x, y), confined to 4, whose ¢,, agree at
all the points @,, inside a frequency rectangle I with corner points (+a, 4-f), where
a>2/A, f>2/A, can be regarded as indistinguishable from each other and may therefore be
represented in the analysis by the same image function. Thus the members f(x,y) of a
statistical set { f(x,y)} of objects confined to 4 may be collected into subsets, each subset
consisting of those f for which the ¢,, in I have identical values, and the images of all the
members of a subset may be regarded as indistinguishable. It is convenient to make the
IN corresponding to a given 4 unique by defining «, § as the least numbers greater than 2//1
for which 4aa, 4bf are odd integers.

Each subset contains just one member for which ¢,, = 0 at all @, outside MM ; let f™(x,y)
denote this member. Then

) px qy)}
S®(x,y) = quC o] A I €pq €XP {2711( +2b (x,y) <4
=0 (xy)¢d (3-20)
and the function
M(u,v) = F[ f] = 3 ¢, sinc (2au—p) sinc (2bv—q). (3-21)
con

@pq ©
Vor. 247. A. 48
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If we group together all the f{x, y) which correspond to each f®(x, y), the original statis-
tical distribution gives rise to a new probability-density distribution over the functions
JS®(x,y) and theset { f™} is likewise a statistical set. By virtue of (3-20), this last probability
density ‘induces’ a joint probability among the parameters ¢,, (which are |4 ||| in
number) and conversely. Because all the members of a subset yield images which are in-
distinguishable from each other, the set of images of the functions /™ (x,y) with their
‘induced’ probability density is statistically indistinguishable from the set of images of the
functions f(x, y) with the original probability density.

For every joint probability density of thee,, at the points @,, in I, there exists a statistical
set of complex functions f(x,y), confined to 4, such that the corresponding set { /®(x, )}
has its ¢,, distributed in accordance with the given probability density. (In fact {f®™(x,y)}
is itself such a set.) The infinite set of ¢,, can be interpreted as the co-ordinates of a point in
complex space of (exactly) | 4| |9 | dimensions, or their real and imaginary parts can be
intepreted as the co-ordinates of a point in real space of 2| 4| |9 | dimensions, and the
continuous entropy H of the set { f®(x, y) }relative to this latter co-ordinatesystem is changed
only by an additive constant when the co-ordinates are transformed linearly. It follows
that, whether the entropy of the set { f®™(x, y)} is taken relative to the above real co-ordinates
or to a linearly transformed set, it will be maximized, under variation of the probability-
density distribution within the constraints which express the observer’s prior knowledge,
when the parameters ¢, (Q,, <9) have maximum joint entropy under these constraints.

When its entropy is thus maximized, the set { /®(x,y)} is said to be random under the
given constraints, and to represent nouse.

Two particular cases are of special interest here. In the first, the constraints consist in a
prescribed mean spectral power distribution for { /®(x, y)}, in the sense of prescribed values
¢, >0 for the | A | [M| statistical means |¢,, |2 = | e (w,,v,) |2 Then it can be shown that
the entropy of { f®(x, y)} is maximized when

(i) the e, in P are statistically independent;;

(ii) each ¢,, in MM has a Gaussian probability distribution with parameter

§pa =+ (Bpe)"
It then follows from (3-20) that the statistical mean

1

is approximately constant for all domains G in 4 which contain a circular area of diameter
sufficiently large compared with A.

In these circumstances we say that the set { f/®(x, y)} represents Gaussian noise, uniform
over A and of prescribed power spectrum. The corresponding probability distribution

IT

QpgcM 27@34

p(e) exp (;Jﬁ’ﬂf) (3-23)

263,
represents the greatest randomness possible to the set under the given constraints.

| T g.hannon (1948, p. 55). The property holds for any real co-ordinate transformation with a constant
Jacobian.
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The joint entropy of the ¢, is then
H—— J p(¢) log ple) AV, (3-24)

where the 2| 4| |9 |-dimensional volume element

dV = 1I dg,, dlpy (1> Gpgreal; €5y = g +1C, ).
Qpg M

By (3-23), H is equal to the sum of the expressions

by = —fp(e) log [2”1%‘1 exp ( 2§j;1 2 )] dv

I e (L g (G e o
where 7+i{ = ¢,
= log (2met},). ; (3-26)

It will be seen from (3-25) that £,, is also the entropy of the complex value distribution of
the single parameter ¢,,. Thus H is the sum of the separate entropies at the sampling points

@p- By (3-26) H= 3 log,+|A4||M|log2me, (3-27)
Qpgc M

and the entropy per sampling point is

1
(AT o gwlog Bpy +1og 2me. (3-28)
q

The last expression can be written in the approximate form

W;l—l J‘leog P(u,v) dudv+log 2me

when there exists a smooth function ¢(u,v) >0 which agrees with ¢,, at each point @,,.
In the second particular case, the only constraint is that the statistical mean power

P— [ 17#y) Pardy (3:29)

has a prescribed value. Then it can be shown that the most random (that is, entropy-
maximized) set { f®™(x,y)} is the one in which

(i) the e, in I are statistically independent;

(ii) each ¢,, in M has a Gaussian probability distribution with parameter

P \}
£ = (jan) -
It follows from (ii) that the spectral power is equally distributed among the different
frequencies (u,,,) in Mt (not all of which can be transmitted by an optical system); thus
we have here a special type of Gaussian noise, called ‘ uniform Gaussian noise’, in which the .

power is uniformly distributedf over the rectangle M in the frequency plane, as well as
over the rectangle 4 in the (x,y)-plane.

1 In the sense that the ‘sampling values’ ]E(ﬁ,,, v,)|? in M are all equal.
48-2
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From (3-20) and (3-23) it follows that the distribution of values of /™ (x,y) is Gaussian,
with the parameter £ = (P/| 4|)}, at every point of 4 and in particular at those points
P, = (27 5 ,5)) which lie in 4. In the more special second case (uniform Gaussian noise)
it can be shown that the distributions at the different points P, are statistically independent.
In the first case (Gaussian noise of prescribed spectral power distribution) there will in
general be correlations between the distributions at different P, .

Because of the manner in which 9t was chosen, there are exactly | 4| |9 | of the points

P = (—2%, éi—b’) inside A. By (3:20), the values of f®(x, y) at these points, namely the

numbers am (. l) .
ST (g gp) (B 4), (3-30)
are connected with the | 4 | |9t| numbers ¢,, by the equations
— 1 pro g )} .
Jos = QMEC:‘JRI 1 €54 EXP {2711( +4b/3’ (3-31)

Thus the parameters f, are a linear transformation of the ¢,,, and the determinant

(3-32)

45,6’ H

of this transformation can be shown to be non-vanishing.

It follows that the | 4 | |9 | ‘sampling values’ f,, = £, +il,, form another set of parameters
which uniquely define the statistical set { /®}, and that the entropy of this set relative to the
system of 2| A| || real co-ordinates £,/ (P < A) differs only by an additive constant
from its entropy relative to the 2| 4 | |9 | real co-ordinates 7,,, {,, (€,, <IM). Under given
constraints, entropy maximizations of { /™ (x, y)} with respect to the ‘sampling co-ordinates’
k.1, in A and with respect to the ‘sampling co-ordinates’ 7,,, {,, in I therefore lead to
the same random set.

Incoherent case. In the incoherent case, the full set of ,,, {,, in M no longer forms a suitable
co-ordinate system, because in that system the conditions (3:19) are equivalent to an
infinite amount of information.

More explicitly: the entropy per degree of freedom of a set .S relative to a chosen co-
ordinate system measures, on a logarithmic scale, the randomness of .S relative to that of a
comparison set S, which is uniformly distributed over a unit volume in the corresponding
co-ordinate space. In the full (y,,,(,,)-space, the conditions ¢_, __ = ¢, make the random-
ness of { /®} infinitely small compared with that of the implied comparison set, and hence
they make the entropy negatively infinite. To discuss entropy maximization we need a real
co-ordinate system such that the implied comparison system S, has a randomness comparable
with that of § itself, and the entropy of § relative to this coordinate system is consequently
finite. Such a system is provided by those 7,,, {,, in M for which ¢=0, and the statistical
properties of the set {/®} are then expressed by a probability-density distribution in
complex space of 4ax(2bf—4) dimensions, or in real (7,,,(,,)-space of dimensionality
dan(4bf—1) ~ | A| |M].

Setting f(x,y) = o(x,y), f®™(x,y) = 0®(x,y) and disregarding for the present the
condition >0, we find that a random object set {¢®(x,y)}, confined to 4 and with pre-

exp { 2711
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scribed mean power distribution ¢,,> 0 over the points ¢,, <9 with ¢>0, is represented
by the probability distribution e |
1 —| €40 |?
)= Il ex ( £q ) 333
p( ) qu com, >0 27T¢pq p 2 ’ ( )
together with the equations €_p —g =€ 4

At every point (x,y) in 4, the distribution of the (real) values of

1 .(px qy)}
(%) = i £2 . 15 .
o®(x, y) qugm‘ A €py EXP {2ﬂ1(2a 20 (3-34)
is again Gaussian with the parameter { = (P/| 4|)*; in particular, this holds at the | 4| |9 |
sampling points P,..

3:22. Nousy objects

As already stated, noise is represented mathematically by a statistical set of functions
having the maximum unpredictability (in the sense of maximum entropy) that is possible
under the constraints which represent the observer’s previous knowledge.

We assume that all the observer knows in advance is that the noise originated in the object
patch 4 and has reached the image surface through the optical system, and attack the
entropy-maximizing problem by an application of the sampling theorem essentially
similar to that already made in §3-21. For the sake of brevity, only incoherent objects
are considered here; the discussion of coherent objects is on essentially the same lines
(see §3-4).

We collect the members ¢ of the object set {7} into subsets, placing in a single subset those
which yield indistinguishable images through an optical system of aperture 7. All that
observations of an image formed by this system can tell us is the subset to which the corre-
sponding object belongs. A subset consists of all ¢ with the same ‘7, cut-off” function ¢™;
we can use ¢7° to represent the subset.

Physically, two objects ¢ belong to the same subset if the transmissible parts of their
spectral functions ¢ are identical. The function ¢™ which represents the subset is not strictly
confined to 4, as were the original functions ¢, but it is everywhere >0, and it is effectively
confined to 4 in the sense that its values outside 4 are very small except close to the boundary
of A. The error in treating o™ as though it were strictly confined to 4 is identical with that in
treating the image of ¢ by an aberration-free system of aperture 7 as though it were strictly
confined to 4, as may be seen by writing equations (2-50), (2-:37) in the forms

070 = F*[1y6] = 0, F*[1y], I=F*[r¢] = 0, F*[7], (3:35)
where f g stands for the convolution ffw S y") g(x—x',y—y') dx'dy’.

Because F*[7,] is nearly a d-function when the greatest circular area contained in the
region Zis large (it is in fact the intensity distribution w in the image of a point source by
the ideal aberration-free system of aperture o), it follows that the convolution ¢™ of ¢ with
F*[1,] is, under the same conditions, effectively confined to the rectangle 4 in the object
plane. The ‘overspill’ is harmlessly small for present purposes when the product of the
diameters dg, d, of the largest circular areas contained in #and in 4 respectively is large
compared with 1.
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Now consider the functions {r"(x, y)}, where
nT = gTo— g, (3-36)

while g™, g™ are the 7, cut-offs respectively of the object and of the object as it would
be without the noise. They present in a convenient form all that can be learned about the
object noise by observation through the optical system. With the same proviso as above, 77
can also be regarded as effectively confined to the rectangle 4. In determining the entropy-
maximizing probability density in the set {#"s} which is to represent greatest randomness
of the observable noise, we may with only harmless inaccuracy replace each ™ by
its ‘A cut-off’ n} = k,n™ and proceed instead to maximize the entropy of the noise
set {n7}. '

Because the functions n7p of this last set are strictly confined to 4, their transforms
v = F[n}] satisty the identical relationship

vip(u,v) = szM sinc (2au— p) sinc (2bv —q) (3-37)
q

obtained from (3-20) on giving f in §3-21 the particular value zp, and the probability
distribution in the set can be expressed as a probability-density function

2(v) = p(Voo V105 Vors V_1,00 Y0, -15 o)
1)

of the variables v,,, which are in fact the values of v} at the ‘sampling points’ @, = (% ' 50

From the identity vip = F[k ;0] = Flr ]y (7o F[0—0,]) (3-38)

wesee that v is the convolution of a function F[« ] which is nearly a §-function (if 4 is large
compared with the resolution limit corresponding to the aperture of the system) and a
function 7, F[o—0,] which is strictly confined to #. Thus the number of variables v,, which
can differ appreciably from zero is equal, with only small percentage error, to the number
of sampling points @, which lie in & ; that is to say, it is approximately equal to | 4| | # |.

By an extension of the arguments of § 3-21 we now infer that, if the product of the dia-
meters d ,, dz of the greatest circular areas contained respectively in 4 and in & is large
compared with unity, the entropies of the noise sets {#7°} and {#7} are both approximately
maximized :

(1) under the sole constraint?

f “ (w)2dxdy = N, (3-39)
by setting v,, = 0 for Q,, ¢ #, while giving, for ¢>0, @,, <%, each complex parameter
vy, = V¥, _,anindependent Gaussian probability distribution of parameter § = (N,/| # |)*.
That is to say, by choosing

p0) = I (#)zexp (:'fﬂzf) if v, = 0 for all Q,, &%
G20, Qpgc F \/(27T) g 2£2
=0 if v,,+0 for some Q,, 7 ; (3-40)

+ I.e. without the constraint o730, which ™ obeys because it is the convolution of the two non-
negative real functions o and F*[7,] = |[F*[« /] |%
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(2) under the sole constraints

lqu IZ = ¢1)q (qucf)
=0 (Qu*F) (3-41)
by setting v,, = 0 for @, ¢ #, while giving for >0, @,, = #, each parameter v,, = v¥*, _,

an independent Gaussian probability distribution of parameter §,, = +./¢,,- That is to
say, by choosing

1 —|vp 12y
)= I ex ( $q ) if v, = 0 for all ¢ F
£0) 420, Qe 7 2MPpq P 24, . s

=0 if v, 40 for some Q,, ¢ F. : (3-42)

The probability density (3-42) or (3-40) also determines the statistical behaviour of
n"o(x,y) == F*[v7o(u,v)] in the rectangle 4 of the (x,y)-plane. Suppose in particular that
4 1s a rectangle containing & in the (u,v)-plane and with sides, parallel to the (u,v)-axes,
of lengths 2a, 2/ respectively. Because n"o is frequency-limited to # an application of the
sampling theorem in the (x, y)-plane gives the identity

no(x,y) = Y nisinc (2ax —7) sinc (20y —s), (3-43)

rs

where —oo <7, s<oo and n[t are the values of n7o(x, y) at the sampling points

By = (x,y,) = (é‘, 5%) (3-44)

corresponding to 4.

It can be shown as in § 3-21 that if {#"o} is governed by the probability law (3-42), each
parameter z7} in (3-43) for which P, lies inside 4 has a Gaussian probability distribution of
parameter (Ny/| 4|)}; when P, lies outside 4 the r.m.s. values of 772 can be taken as zero
to a sufficient approximation. However, the |4 ||# | parameters n72 are not in general
statistically independent; they are so only in the special case where ¢,, is constant inside
# and # coincides with the rectangle #. When ¢,, is constant inside & the noise may be
called uniform Gaussian noise, but it is important to remember that the property of statis-
tical independence of sampling values only holds in two dimensions when the Gaussian
noise is uniform over a rectangle in frequency space. In this case, the entropy H of the set
{no} can be calculated from equation (3-42), which gives

H= % log(2mt}) (3-45)
q>0, qucﬁ"

:glAlff log ¢(u,v) dudv+| A | | # | log 2me (3-46)
F

if a smooth function ¢(u,v) exists with ¢(u,,v,) = ¢, for all 'Ql,‘q < #, and the entropy per
degree of freedom is then

F;"_I f f _log ¢(u,v) dudv-+log /(2e). (347)

The constraint 070> 0. Since Gaussian noise n7(x, y) of the type (3:43) can assume (though
with very small probability) arbitrarily large negative values, it follows that not all of the
real functions oo+ 770 will satisfy the condition ¢70>>0. However, the reduction in entropy
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which results from imposing the condition is negligibly small in the case of an object {7}

with Gaussian noise in which the r.m.s. noise ((n,,)%)* at each sampling point P, in 4 is a
few times smaller than the value of ¢ at this point. If, for example, the parameter X, of
the Gauss distribution at a particular P in 4 does not exceed one-third of the (positive)
value of (of),, there, the imposition of the constraint ¢7¢>0 disturbs the probability

distribution at this point alone by less than

1 s (g2 1

NP exp (m) dt = :/-T;sze‘“z du = 0-0054. (3-48)
The fractional change in the entropy per degree of freedom of the whole set is of the same
order of smallness. ‘

In these circumstances we can still say, with only harmless inaccuracy, that random object
noise effectively confined to 4 and strictly confined to #, of given mean total power N,
is described by equation (3-40) ; while random object noise, similarly confined, of prescribed
spectral power distribution ¢,, is described by (3-42). The mean total noise power in the

last case is
N—1 s W:H B(u, v) dudo. (3-49)
l 4 l QpgcF b 7

Adequacy of the approximations. The physical meaning of the proviso that the product
d,d of the diameters of the largest circular areas contained in 4 and in # respectively
should be large compared with 1 is that the linear dimensions of the isoplanatism-patch 4
should be large compared with the resolution limit corresponding to the aperture of the
optical system; that is, that the aberrations of the system shall change ‘slowly’ over the
working field. How large the product d,d; needs to be in order that the approximations
shall be accurate enough for present purposes depends on the signal-to-noise ratio in the
image; when almost all the noise originates in the object surface, it suffices if ¢, d; is large
enough to ensure that the statistical mean total power

] :“”A)(ET)? dxdy

which is spilled out of the isoplanatism-patch A4 by diffraction on replacing o by ¢7 is small
compared with the mean transmissible noise power

f f (o0 —o3)2dxdy
A

in A. When an appreciable part of the noise originates in the image surface, a somewhat
less stringent condition is sufficient (see § 3-3).

3:23. Information content of a noisy image

Of the noise which affects an image, that part {z,} which originates in the object is fre-
quency-limited to # since its spectrum has been multipied by 7 in passing through the
optical system. To this is added the noise {x,} associated with the radiation detector used to
observe the image. Photon noise cannot of course be fully covered by a wave theory, but
its effects on information content can be discussed by including it in the detector noise. This
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procedure takes into account the fact that its effect on the image is not frequency-limited
to &, as might have been expected on a wave theory if it were regarded as originating in
the object. The noise {n,} may conveniently be subdivided into noise affected in magnitude
by the presence of the arriving radiation and noise not so affected. Examples of noise not
so affected are dark-current in photo-electric image tubes, and the granularity of fog in a
photographic emulsion. Noise dependent on the incident radiation includes the ‘shot’-
noise of photo-current and the granularity of an emulsion not arising from fog; the noise in
sensitive detectors under normal working conditions is often predominantly of this type.
Even for very good present-day detectors this noise power is usually still some 10 to 100 times
greater than the photon noise in the radiation, but it is of interest that in many cases the
increase is most appropriately regarded as a multiplication relative to the signal of the
photon noise, rather than as an addition toit. For example, a photocell or a television camera
responds only to a certain random fraction ¢ (0 <e<1) of the incident photons; this multi-
plies the signal-to-noise power ratio by ¢ (Johnson 1948), and it is the noise so generated
which predominates in many practical cases. Similarly, the (logarithmically) major part
of photographic noise is accounted for by a similar ‘quantum efliciency’ ¢ together with the
fact that several effective quantum hits are needed in order to make a grain developable
(Silberstein & Trivelli 1938; Webb 1950), a developable grain being analogous to a single
‘count’ in a photon-counting photometer. The essential point is that in these cases noise,
originating in the first place from the granular quantum structure of the light, is magnified
relatively to the signal by the receiver responding much as if the quantum structure of the
radiation had been coarsened by an increase in the value of Planck’s constant. That similar
considerations apply to the eye has been pointed out by Rose (1948). Noise of this second
kind will clearly be correlated with the intensity in the image surface, and noise of the first
kind may become so in effect if the response to radiation is non-linear, as in photography.

No formal distinction is usually necessary between noise generated in this way and noise
of different physical origin, for example, that originating in unevenness of sensitivity over
a photographic plate. In a well-made emulsion, the effect of such unevenness on the inter-
pretation of fine detail is negligible; it may be perceptible, however, in the increase of
Selwyn granularity for large scanning areas. We may accordingly represent the image by
a statistical set {/,(x,y)} of intensity distributions 1,(x, y) >0, where

1(%,y) = Li(%,y) +ny(%, 9) (3-50)

and the function 7,(x, y) represents the effect of noise originating in the image surface. The
set {n,} = {I, —1I,} represents the effect of noise imaged through from the object surface;
both 7, and n, will in general show statistical correlation with /;. Any frequencies of n, which
lie in the part of the (,v)-plane outside # can be distinguished from the ‘signal’, and their
effect ignored by using #n§ = F*[«z F[n,]] in place of n,; this has the same effect as supposing
from the start that F[n,] is confined to #.

In the case where object and image, confined as before to 4, are of low contrast and the
total noise power is small compared with the power corresponding to the mean brightness
level, the correlations between 7, n, and I; become negligible; and in this approximation
maximum prior ignorance is expressedt by supposing {z;} and {n,} both to represent

1 Compare Woodward (1953), §2-8.
Vor. 247 A. 49
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Gaussian noise, effectively limited to 4, strictly frequency-limited to #, and statistically in-
dependent of each other and of /,. This case is especially closely related to the problem of
the assessment of optical images, since it is in rendering fine detail of low contrast that an
optical system is most severely tested. It will accordingly be taken as the basis of the sub-
sequent discussion. A discussion which includes the effects of correlation between signal and
noise has been given in the one-dimensional case by Wiener (1949).

To the optical image spread may be added a further spread attributable to properties of
the light-sensitive device which receives the image. In a photographic image, the effect of
photographic spread is to replace the function / = F*[7F[s]] by the convolution /; = I, w,,
where w,(x,y) is a spread function (near to a J-function) characteristic of the emulsion and
the development process used. We suppose w, normalized by the condition

wa w,(x,y) dxdy = 1.

Then the equations I, =T, w, = F*[F[I].71]
= F*[17,¢€], (3-51)

where 7, = F[w,] and | 7, | =1, show that this effect can be expressed in terms of an ‘accept-
ance factor’ 7,(u,v) = F[w,] in frequency space.T Thus the photographic image of a low-
contrast, incoherent object occupying an isoplanatism-patch 4 is statistically determined
by the Duffieux transmission factor 7(u,v) of the optical system and by two functions
7,(u,v), ¢,(u,v) which describe properties of the emulsion-development system; viz. its
spread function and its noise-power spectrum under the given conditions of illumination
and exposure. The relevant properties of the image of a single low-contrast object {¢} can
now be represented by a statistical set {/,(x,y) +nZ (x,y)}, where
1, = F¥[rm, Flo]]

= F*[11, Floo]] +m; (3-52)
the sets {n,}, {#J} being statistically independent of each other and of the spatial variations
in o, which represent the object structure. Here n; = F*[r7,F[n,]] and {r,} is the part of
the image noise which originates in the object surface.

3-231. Statistical sets of images. Suppose, for example, that we have (i) a set of laboratory
photographs sufficient to define the statistics of the image noise, (ii) one external photo-
graph. What is the information content of this photograph?

While it is possible to speak in a certain sense of the information gain when a particular
object is presented and a particular image observed (see Woodward 1953, §§ 3-3, 3-5), this
is unrealistic from the point of view of the designer, since by hypothesis he does not know
exactly which object will be presented, or which image observed.

From the observer’s point of view, the effect of the observation is to change the probability
distributions which express his knowledge of the presumed object, and the information gain
should be expressed in terms of these probability distributions. Shannon’s general definition
of information is explicitly in terms of these probabilities and the definitions of §§ 3-11 and
3-12 above are special cases of it. The notion of probability corresponds analytically to that
of a statistical set and it is the average over such a set which was implied in the footnote on

1 7,(0, 0) =1, in consequence of the normalization adopted for w;.
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p- 383. From Shannon’s definition it then follows that, for given image noise and given prior
knowledge of the object, the average amount of information in a single image is the mathe-
matical expectation of the logarithm of the ‘number of distinguishable images’ which arise
as the object varies statistically according to the constraints or probability densities which
express the prior knowledge of the object class (cf. Shannon 1948, §§ 6, 20).

Given the statistical properties of the image noise and a statistically characterized object
set, we can then ask, for example, what small traces of Seidel aberration will offset given
fifth-order aberrations in the optical system in such a way as to maximize the (average)
information content in the image of an object from the set. The answer represents that type
of aberration balancing which optimizes optical performance when reinterpretation of
images is not excluded. When reinterpretation is excluded, performance is more appro-
priately assessed by means of the average similarity, in some prescribed sense, between
image and object. In both cases, the optimum design depends explicitly on the noise- and
spread-characteristics of the light-sensitive receiving surface and the prior probabilities
which specify the object set.

This example illustrates the point that it is hardly meaningful to speak of the information
design of a system for one particular object but only for a class of objects. This class may in
principle be arbitrarily narrow, but the amount of information transmitted by the optical
system will always be very small if the range of the object class is reduced until that of the
corresponding image class becomes comparable with the range in the noisy image of a
single object.

3-232. Dustinguishability in terms of entropy. Let {¢} be a statistical set of intensity distribu-
tions ¢ = ¢™ which represent objects to which the design s to be relevant, and let p(¢) denote
its probability density, defined relative to a suitable 7-dimensional co-ordinate system ..

Inasmuch as ‘noise’ has been defined as the unpredictable disturbances to measurement,
the distinction between a set of different objects and a single object subject to noise is not
absolute, but may depend on the purpose of the observation. For example, the fluctuations
in brightness associated with turbulence in the solar photosphere are properly regarded as
‘noise’ from the point of view of measurements of limb-darkening coefficients but not from
that of investigations of solar granulation.

The drawing of a distinction between ‘objects’ and ‘noise’ in the set {¢} corresponds
analytically to the setting up of a law which assigns to every member ¢ a statistical subset
{o'}, of {¢} with a probability density p,(¢"). By the ‘noisy object ¢,” in {7} is meant the subset
{'}s,- In the application, ¢, is the mean value of ¢’ over the subset {¢'}, , but it is sufficient
in the general discussion to suppose merely that no two different ¢ generate the same subset.
Then each noisy object {¢'} determines a unique ¢, for which {¢'} = {¢'},,. We call this ¢,
the ‘object without the noise’ and the statistical set of functions n, = ¢’ —7,, with probability
density p,, (ny+0,), is called the ‘r-noise’.

The randomness p(o) of {¢} relative to S is defined by the equation

log () = H =~ [ p(e)logp(e) d, (353)

where dVis the element of volume in the co-ordinate system S; that is, log p(¢) is the entropy
of {o} relative to S. If{¢}is uniformly distributed throughout a finite volume Vin the r-dimen-
49-2
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396 P. B. FELLGETT AND E. H. LINFOOT ON THE
sional S-space, then p(¢) = V. We call [p(s)]"/" the ‘spread’ of {s} relative to the co-ordinate
system .S.

The effective number N of distinguishable noisy objects in {¢} may be defined, relative to
$'in the first instance, as the continuous geometric mean of the ratio

plo’) ( spread of {¢'} in § )’ (3-54)
p(n,)  \spread of ¢ -noise in

as ¢, runs over {¢}. Or, what is equivalent, log NV is the continuous arithmetic mean of the

difference

(entropy of ¢’ relative to ) — (entropy of o,-noise relative to )

as o, runs over {c}.
If the probability distribution p,, (n,) is the same in all the noisy objects, that is, if object
¢, and noise 7, are uncorrelated, this gives at once

log N = (entropy of ¢’) — (entropy of noise), (3:55)
both entropies being evaluated relative to S.

In the general case we represent ¢’ as a point in a second co-ordinate space S’, identical
with §, and obtain

log N = — [ p(¢") log p(e") AV + [p(0) AV [ (") Tog p, (") aV" (3:56)
= —[ (o) 1ogp(e") V" [ p(a) AV + [p(0) AV [p,(0") log p,(0") dV"

_ f f dVdV p(e, o) log p(c’) + f f dVdV p(e, o) log p, (o),

where p(o,0") = p(0) p,(0') = p(¢’)p,(c) is the joint probability density of (s,0’) in the
product space § X',
: : 0,0)
~ [[avarpia, @) 1ogp—1(’(%ﬁ)~. (3-57)
The first term on the right of (3-56) is equal to the entropy of ¢’ relative to S, and the second
term becomes equal to the entropy of the noise relative to $” in the special case where the
noise is uncorrelated with the object.

A transformation of co-ordinates in ' and in $’ evidently leaves the expression (3-57)
unaltered. Thus the effective number of distinguishable noisy objects is invariant under
a co-ordinate transformation of non-vanishing Jacobian.

To calculate the effective number N of distinguishable levels at a single sampling point
(§3-12) in the (¥,y)-plane we have only to set r = 1 and to suppose that {r,} and {r,} have
independent Gaussian distributions with known statistical mean-square deviations s2 and
n? from the mean values o, and 0 respectively. Then ¢’ = ¢, n, has a Gaussian distribution
of mean-square deviation 5272, and {n,} is statistically uncorrelated with {r,} in the sense
that its probability density distribution is the same for all ). Now the entropy of a Gaussian
distribution of standard deviation ¢ is log./(2me) £, by an easy calculation (Shannon 1948,

p- 54). Hence, by (3-55), 52 - n2
logN: A/ poR (358)

which is equivalent to Shannon’s result quoted in § 3-12.
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3-233. Application to low-contrast images with Gaussian noise. Each individual observed
image I, may be regarded as belonging to the set

{L} = I +{no}y, = F*[rr Fo]]+{no}y,

which corresponds to the object intensity ¢ = o,-+n, prevailing during the observation.
(The observer of course knows only a probability distribution for ¢). The set {I,} in turn
is a subset of the set of images {I)} = {I, +{n,}; } corresponding to the individual object o,
which was presented, together with its noise, and {I;} is itself a subset of the statistical set
{I} of all possible images corresponding to {¢} = {o(+ {7y}, }-

As already noted in § 3-23, it is permissible to suppose from the start that {n,} is frequency-
limited to &, since only the ‘# cut-off’ of n, affects the inferred probability distribution of
the object.

We now suppose that the prior knowledge of the object class and of the object noise is
expressed by saying that the statistical sets {o(} and {,}, are confined to 4 and have pre-
scribed spectral power densities but are otherwise random.

The spectral power density of {¢}, which depends on the individual spectral power-
densities of {s,}, {n,} and on their correlation properties, is determined if these are specified;
in particular it is the sum of the two individual power densities when the correlation is zero.
In the low-contrast case, {¢,} and {n,} are uncorrelated and the statistical mean

0(x>!/) = BKA(xa Y)
where B is a positive constant; it then follows from what has been said in § 3-22 that {r — Bk ;}
has the statistical structure of Gaussian noise, uniform over 4 and of prescribed spectral
power density.

The set {1,} to which the observed image I, is regarded as belonging is then the set {¢}
transformed by the operator 7"= F*[rr F[...]] and combined additively with the set {r,},
which is statistically independent of it in the low-contrast case, and which also has the
statistical structure of Gaussian noise, uniform over 4 and of prescribed spectral power
density. If we use the notation

€o(u,v) = Flog—0o], vo(u,v) = Flng];
e1(u,0) = FII,—1,] = 1716w, 0), v, (u,0) = F[n,] =17, vo(u,v);
e5(u,0) = F{I,— L], vy(u,0) = Flny];

where the bars denote statistical means over the appropriate sets, the spectral powers of

{ffo}’ {ny}, {n,} at the sampling points @, can be written as | ¢,|2,, | v,|2, and | v, |2, respec-
tively, while that of {f,—1,} is

¢pq = |7, qu (I qu +| v ‘127(1) +[ v qu- (3-59)

The function | v,(u,v) |? is the same as ¢, in § 3:22; it is zero outside # when, as here, {,}
is supposed to be frequency-limited to &% .

To evaluate the effective number of distinguishable images in {I,}, we use the procedure
already applied to {¢}. In the complex co-ordinate system S, provided by the parameters
€, at those sampling points Q,, for which ¢>0 and (77,),,==0, the set {Z,—1,} has a Gaussian


http://rsta.royalsocietypublishing.org/

a
N

A A

A\

/ y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 P. B. FELLGETT AND E. H. LINFOOT ON THE

distribution of spectral power density ¢,, and it contains Gaussian noise, uncorrelated with

I, of spectral power densit ——
» O PECHEIP I AL R (3-60)

Therefore the effective number N of distinguishable images 7, is given by the equation
log N = (entropy of {I,}) — (entropy of image noise)
= (entropy of {,—I,}) — (entropy of {n, +n,}),

both entropies being relative to the real co-ordinate system derived from §},T

= log (2meg,,,) — log (2mew,,), 3-61
70, (7’27'1)1;q=‘1=0 g (2medy,) q>0,(§n),,q +0 g (2mewy,) ( )
by (8-45), = > log@l‘l
=0, (T71)pg+0 Wy,
=51 A|ff log———¢(u’ %) dudo (3-62)
: 7 Co(u,)

if a smooth function g%lz—; > 0 exists which agrees with g@ at the sampling points @, in # .}
) bq
When | €y(u,v) |2, | vo(u,v) |? and |v,(u,v) |? are smooth positive functions inside &, (3-61)
and (3-62) can be written in the form
_ kAR ,
logN= > log(l1+ (3-63)

>0, (T71)pq+0 |77, lzq | v lzq'l',—’;;lg;

z]A]ff logJ(l+ “Z‘.ﬂe",i___)dudv (3-64)
7 |7y |2 o [P+ [ v, 2
and the information per unit area in the image is seen to be
lffl A/( |77, 2] &2 )
=5 o 1+ AL L0 ) dudy, 3:65
PN (g [ P (3:69)

where f'is the focal length of the system.

When the noise {1,} is negligibly small, so that | v, |3, can be taken as zero for all p, ¢, the
quotient ¢, /w,, reduces to ([ v, [2+ ¢y [2)/| vy |2 and (3:51) shows that log N is independent
of the actual values of the non-zero factors (77,),,. In this case the number of distinguishable
images I, is equal to the number of distinguishable functions ¢ (see (2-50)), whatever the
aberrations. Thus aberrations alone do not reduce the information in the image; it is the
interaction between the aberrations and the noise 7, which reduces information. From
(3-63), remembering that | 7| <7,, we see that in the presence of image noise n, the value
of log N (that is, the mathematical expectation of the amount of information in a single
image [,) is greatest when the system is aberration-free.

3-3. Optical consequences of equation (3-64)
Some interesting consequences follow from the fact that the (statistical mean) informa-
tion in the image depends on 7, 7,, €y, ¥, v, only through their squared moduli.
1 The substitution of {I,—I,} for {I,} is equivalent to a parallel bodily shift of the corresponding pro-

bability distribution in this co-ordinate system.
1 Inside &, 7(u, v) +0 except at a negligibly small proportion of the points @,,, and we can suppose

7,(u, v) 0.
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A set in which each member represents the same point-object situated in 4 (but with
fluctuating brightness) and a uniform Gaussian set {¢‘® — Bk} corresponding to a random
low-contrast set {¢®™} of objects frequency-limited to & possess the same spectral power

function | 6(z,v) [? in # (namely one which has the same values [¢|2, at all the sampling
points qu in #) if they have the same total mean square fluctuation. It then follows from
(3-64) that the condition for maximizing the (statistical mean) information in the image
can be expressed as a condition on the intensity distribution in the image of a point-
object situated at an arbitrary point (x,y) inside 4.

The above conclusion was based on the assumption of a uniform Gaussian object set
{0}, confined to 4; this corresponds to the absence of prior information about the mean
spectral power distribution in the object set. When the object set has a known mean power
spectrum and a known (uncorrelated) noise power spectrum, an extension of the same result
appears as an analytical consequence of the relation

17, = 1,C[€,6*] = Flwyw,] (3-66)
(see § 3-23, equation (3-51)), which allows us to write (3-64) in the form
60 |2 | Flwy w,] |2
tog N[ 4] [[ 10g (1 + Leo[*| Flwsw, ) dudo. (3-67)
7z | Flwsw,] [ 2 [vo > 4] v, |2

Here w, w, is the intensity distribution in the noise-free image /; of a point-object of unit
power and w, is the ‘spread function’ in the receiving surface.

(3-67) gives the values of log N for a single isoplanatism-patch 4. The corresponding
result for the whole image is

[60]2] Flwsw,]|?
1ogN:H dxdy” logA/(l—l— [6o[*| Flwy 0, _*)dudv, (3-68)
F F | Flwswi] 2] v |24 v, |

where now ¢ = e(u,v; %,y), vy =vy(%,v; x,y), vy =vy(u,v; x,y) are calculated, for each
(%,y), from the values of ¢ in the largest available isoplanatism-patch surrounding (x,7),
and where the (x, y)-integration is over the working field F.

A number of interesting special results can be deduced from (3-68). First we note in
passing that, whatever the aberrations may be, information is increased by increasing field
or aperture,T though it may have to be extracted by elaborate interpretation or image-
reconstruction processes if, for example, an increase in aperture has introduced heavy
aberrations. Next, in any optical system:

(1) For given field and aperture, the optimum camera design from the information point

of view is determined by the four functions [ ¢, |2 |v,[2, w, and |, |2, that is to say, by the
mean-power spectra of the expected objects and the expected object noise on the one hand,
and by the two characterizing functions (spread and noise power) of the receiver on the other.

(2) When |, |2 is negligibly small; that is, when nearly all the noise is in the object, the
(statistical mean) amount of information in an image is independent of the aberrations, as

noted in § 1, and is 5
log N = ff dxdyff log)‘/(l—l—l a )dudv (3-69)

T Unless, indeed, the r.m.s. noise level in the image surface increases more rapidly than in simple pro-
portion to the mean brightness of the low-contrast image.
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If, in particular, 7, is negligible and there is no prior information about object-structure o1
object-noise power spectrum, the ‘most random’ (that is, the entropy-maximized) sets

{70} and {n,} are obtained by giving | ¢, [? and [, |2 constant values 52, #? respectively in &
and (3-69) becomes 52
log N = |F||f|logA/(l-l—n—2).

In this case the information is simply the product of field area, aperture area, and a simple
function of the signal-to-noise ratio.}

(8) The inner integral in (3-68) tends formally, as the signal-to-noise ratio becomes
small, to the analogue of the expression used in electronics to evaluate the ‘ detectability’
of a pulse in the presence of noise; there the maximum squared ratio of peak pulse height tc
r.m.s. noise level obtainable by suitable filtering is proportional to the frequency integral of
the power ratio in the spectra of received signal and noise. Detection is possible at a lower
signal-to-noise ratio than is shape evaluation, so that it is satisfactory to find the information
equation for weak signals taking a form which suggests that it is concerned with detection.

(4) When [v,]?>[v,|2; that is, when nearly all the noise is either quantum noise or
noise originating in the image surface, we have

log N — ” dxdyff logJ(1+'€°‘ Zgll)dudv, (3-70)

and it is apparent that both aberrations and ‘image spread’ reduce information; the former
by reducing | 7|, the latter by reducing | 7,|. By (3:66), | 7| is greatest when & =1 in &/
and 0 elsewhere; that is, when the aberrations are zero. Thus modifications of the images
by phase shift in the exit pupil can never improve the information-passing capacity of the
camera. They can, of course, present the information which does get through in a more
convenient form.

(5) When object noise is negligible but

ffflrr, |2|60|2dudv<ffg| vy |2 dudy, (3:71)
so that the image detail is almost everywhere smothered in noise, we obtain from (3-66)
and (3-68) : 2
log N = ff dxdyff |€0‘| |T|721, dudo. (3:72)
Va

In the special case where object structure and image noise are both uniform Gaussian
over &, (3-72) becomes 52
log N = _éff dxdyff | 77, |2 dudo. (3-73)
2n2)J) p P

The inner integral

” lrrllzdudv:ffw |TTI|2dudU=ffw (L(x',y))?dx’ dy'; (3-74)
g‘ -— 00 — 00

where 7;(x',y’) is the normalized intensity distribution in the image (with ‘spread’) of
a point source of unit power situated at (¥, y) in the object plane, the normalization being
given by the equation o

f L(x,y)dw'dy’ — 1. (3-75)

1 This result may be compared with Shannon’s quoted above (§3-13).
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Dropping the normalization, we obtain for the (statistical mean) amount of information
in a field patch 4’, not necessarily isoplanatic, of the noise-smothered image of a random
low-contrast object the evaluation o
[ navay
—

o || drdy 2 5
2 ) ( f Ildx’dy’>

© o0 2
The expression f f I2dx'dy’ / (ff_ A dx'dy’)

under the integral sign is of the same form as one which has been discussed (Fellgett 1953,
equation (18)) in connexion with the evaluation of ‘sharpness’ in photographic images
and grain.

3:4. The coherent case
Essentially similar results follow if we suppose that the object is coherently lit, that

A
resolved components of the complex displacement D over the image can be measured in
some way, and that the relevant properties of the receiver are described by a complex
spread function %, and a complex noise set {7i,}, so that the quantities ‘observed’ are com-
A A N A . . A . . . .
ponents of D, = D, @, +1#,. If n,is uncorrelated with D, the information gain for any given

component of 52 is then of a similar form to (3-63) and (3-64) ; the mean-square signal and
noise intensities are replaced by the mean-square values of the corresponding components

A A A . . - .
of D, and of 7, +17,, where 71, = F*[77, F[#,]], and the integration is over .o instead of over

Z . Since observation of a single resolved component of f)z cannot distinguish the separate
contributions from the members of a pair of ‘opposite’ frequencies (#,v) and (—u, —v), the
information content of each resolved component of the image depends on the members of
such a pair only through their sum. For the average information content log N, of the real

part of ﬁz we obtain, as the analogue of (3-64), the equation

_ (NPT, €47 u,v) .
log Ny = |A[Jf logJ(l% AR (ERﬁQQu,v)) dudy, (3-76)

where V= F[n,], 0, = F[#,], ¢, = F[E i Bk 4] and the notation (‘Rf yu,v) denotes the statis-

tical mean square - =
(RLS(u,v) +f (—u, —0)])2

An evaluation of the average information content log Ng) of the imaginary part of IA)2 is
obtained on replacing the symbol R (real part) by J (imaginary part) in (3-76).
Measurements of the above kind are not normally possible with the more conventional
types of optical instruments; however, they are relevant to a discussion of the information
content of images by interference microscopes and phase-contrast microscopes.
If the presumed object set has the statistical structure of Gaussian noise with known power
spectrum, then at each sampling point @,, in M

(9{6"‘7716(&%: = ? |pq leo 9>
(Re$T7 D0y, 0,) = | 77117, ] ﬁo s (RD2080,) = |05 [3 (3-77)

Vor. 247. A. 50
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for any fixed value of the phase angle ¢. It follows that the mean information content is

. A
the same in each resolved component of D,, namely,

2 2
log N — | 4 Hl / 771 12[8| . 3.78
0g | 4] og ( TTl,2|VO,2+,V2,2)dudv (3-78)

The right-hand side of (3-78) depends on the transmission factor 7 only through | 7 |, which
by (2-38) is independent of the aberrations; thus aberrations do not alter the mean in-
formation content in a given component of the images of coherent objects belonging to a
set of this type. Non-uniform aperture shading can alter the information content, since it
alters |7 |.

A more restricted type of object set is of some specialized interest in microscopy ; namely,
one in which the objects transmit the light with negligible absorption and with small phase
variation. In this case it is known in advance that the resolved part of the first-order small
quantity € (u, v) +€,(—u, —v) in the direction parallel to the vector € (0, 0) is of the second
order of smallness. If the observer is restricted (as is approximately the case when an object
of this type is viewed in an ordinary microscope with axial illumination) to observation of
the resolved part of (77,¢,),, ,+ (77,&,)_,, , in the direction parallel to the vector (77,&),, ,,
then the mean information content of the observed images is greater when aberrations are
present (i.e. when 7 is not everywhere real) than when they are absent. A similar property
is turned to practical account when a well-corrected microscope is deliberately defocused
in order to infer the structure of a fully transparent object under critical or Kohler
illumination.

4. IMAGE ASSESSMENT
4-1. Assessment by similarity

The calculus established in § 2 for the similarity of image to object, and that established
in § 3 for the information content of the image, now make it possible to formulate specific
definitions which relate the image quality, from these two points of view, to the ikonal
function ¢(£, 7; x,y) of the optical system.

In ray theory, one of the most elementary measures of image defect is that based on the
‘spread’ or maximum angular extent of the geometrical image. It is well known that this
measure is unsatisfactory in cases where, for example, the geometrical image consists of
a bright central nucleus containing most of the light and a much more widely spread outer
region of very low ray density. With images of this kind, a marked improvement in assess-
ment can be obtained in a very simple way by using the r.m.s. deviations of the rays instead
of their maximum deviations; that it to say, by calculating the radius of gyration of the
geometrical image instead of its maximum radius. This method, adopted by Gauss in 1801
to assess the effects of primary spherical aberration, and used again more recently by
Linfoot & Wayman (1949) in a discussion of the aberrations of field-flattened Schmidt
cameras, is inapplicable to diffraction images. The essential difficulty is that, whether or
not aberrations are present, an optical system with a sharply defined aperture of the usual
kind gives diffraction images in which the contribution to the radius of gyration from an
annulus of given width centred on the principal point of the image is of the same order of

+ This paper contains two errors; a corrected version of the analysis appearsin Linfoot (1955).
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magnitude whether the radius of the annulus is large or small. It follows that a satisfactory
assessment of diffraction images must give less weight to the ‘distant diffracted light’ and
more to the central part of the image than does that by means of the radius of gyration of
the intensity distribution.

Assessment by fidelity

An assessment which meets this requirement, and at the same time retains some of the
good points of the assessment by radius of gyration, is suggested by the analysis of §2. In
§2-4, the fidelity defect of a noise-free image was defined as the normalized mean-square
distance between this image and the corresponding object. It can be pictured in geometrical
terms as the distance between two points in multi-dimensional space which represent the
object and the image respectively (compare §3-21), divided by the normalizing factor

f J o?dxdy orfj | k |?dxdy in the incoherent and coherent cases respectively.
4 4

When the situation is complicated by the presence of noise, the analysis takes a very
similar form. For shortness we consider only the imaging of an incoherent object contained
in an isoplanatism-patch 4. The extension to a full working field /' can be made by dividing
it into isoplanatism-patches. The r.m.s. distance d(c,1,)>0 between the noisy object
o = 0y+n, and the noisy image I, = I, +n, is defined by the equations

0, 1,) =”A (r—I,)2dxdy :HA (o —I,)2dxdy. | (41)

If we assume that the object structure is statistically independent of the total object bright-
ness, and that the noise is uncorrelated with both of them, (4-1) gives, by Parseval’s theorem,

1) :” (o—ll)zdxdy—l—ff ndxdy
A
=Jf | 1—77, |2 (Je]2+] dudv+ff —|~|v0|2)dudv+ff | vy |2 dudo,
F
where ¢ = F[o], while v, and v, have the same meaning as in § 3,
“ff (Je]2+]v,[2) dudv—ff (1—| 1—77,12) (J€ |2+ v, |?) dudv
+ffw | vy |2dudy. (4-2)

(4-2) is applicable whenever the object set is of the type discussed in § 3-233; the relation
between ¢ here and ¢, in that section is given by the equations

¢ = Foy] = F[oy—Bx,] +BF[« ]
= ¢,+ B| 4| sinc 2au sinc 2bv.

In (4-2) the first term, which is equal to f f 02dxdy, depends only on the object set; in the
4

notation just introduced, it can be written as d%(¢, 0). Then the fidelity defect in 4 may be
defined as
d*(ny, 0)

(o, L) 1 _ T dudy
20,00 | zzz(a,o)”g ~I 1= %) (P[] dudv-25°775 -

(4:3)

50-2
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The assessment of image quality through fidelity defect in the above sense penalizes
image distortion just as heavily as lack of sharpness. In bringing out this consequence of
the proviso that image reconstruction is excluded, our analysis has shown that its strict
application penalizes distortion much more heavily than is usually considered appropriate,
and it may be concluded that a rudimentary form of reconstruction is involved when an
image is looked at in the ordinary way. It is the habitual use of reconstruction or interpreta-
tion processes during the act of seeing which explains the fact that even fairly large amounts
of smooth distortion in an image do not prevent the easy recognition of familiar object
patterns. A modified assessment of image quality which takes account of this fact can be
obtained by allowing for the calculated distortion of the optical system before matching the
image against the object. Strictly speaking, this elimination of distortion is a rudimentary
reconstruction or interpretation process which should be used whenever the recognizability
of patterns or ‘symbols’ is given precedence as a requirement over the strict geometrical
similarity of image to object. It occurs automatically if, in defining the coordinate mesh
(x',y’) in the image surface S’ (see figure 1) we assign to the principal point of the
geometrical image patch of the object-point (x,y) the coordinate numbers x'=x, y' =y.
With the definition adopted in §2-1, it amounts to replacing, in the function w(x’,y’; x, ),

the arguments «’,y’ by x’—f;Z(r), y’——yr—,Z(r) respectively, where »' = +./(x'2+y'?),

r =+./(x*+y?) and the distortion function Z(r) is calculated from the design data of the
system.

When image quality is assessed by means of fidelity defect in the sense of (4-3), the problem
of optimizing a camera design relative to a given object set can be interpreted as that of
choosing the available design parameters so as to minimize the statistical mean of d%(z, 1,)
or, what is equivalent, the expression

[ Q= pa—rm 5 (e T ) dudo (+4)

for the corresponding image set {Z,}.

Expression (4-4) provides, for example, a means of determining in what circumstances
an increase in aperture, with consequent worsening of the aberrations, may improve the
image fidelity over a given field through reduction of the diffraction spread. When, on the
other hand, the aperture is given in advance, the expression

J[ (741077 duco

is unaffected by changes in optical design and the problem reduces to the minimization of
the expression

ffgl =77y [2([e [+ [, [2) dudv (45)

under variation of the available design parameters. The optimal solution will depend on
the statistics of the expected object class through | ¢, |>and | v, |?; prior ignorance of this class
is expressed by taking [e,[24[v,|? to be constantf throughout # (compare §§3-231

T More accurately, by taking |e,|2,+ [v, |2, to be constant over the sampling points Q,, in .#.
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to 3-233). Then the part of the image defect corresponding to (4-5) takes the simple

form 1
(7] f | 1—77, |2dudo. (4-6)
F

Since | 7| <7, everywhere, (4-6) can never fall below the value

1 2
WJJ;(I——TO]TID dudo, (47)
where, in the case of a circular aperture of radius « in (%, v)-units,

na’ry = C[Kk 4] = 2a®arc cos %a— rJd(a®—%?)  (u?+12<4a?),
=0 (u2+0v2>=4a?%).

If the spread function w, in the receiving surface is near to a d-function, so that its Fourier
transform 7, is substantially equal to 1 throughout &, (4-7) has the value 0-615. It follows
that in a system of circular aperture the part of the image defect corresponding to (45)
never falls below this value.

The spread function w, is usually symmetrical in practice, so that 7, is real for all (u,v);
it need not, however, be always of positive sign. In a photographic emulsion, both w,
and 7, are ordinarily positive everywhere if the intensity I, is taken to mean photographic
density. The equations 7(0,0) = 1, 7,(0,0) = 1 show that the appropriate normalizations
are already incorporated in the notation. In the case of a photographic negative, the effect of
the w,-normalization is to replace it by a normalized ‘positive’ which can be directly com-
pared with the object.

4-2. Assessment by information

We have seen in §4-1 that the adoption of object-image similarity as the guiding prin-
ciple in image assessment does not lead naturally to a unique figure of merit, but leaves room
for the formulation of a variety of analytical criteria. Assessment by information content,
on the other hand, can conform to intuitive notions only if the information is measured in
the manner which Shannon showed to be uniquely prescribed by a set of assumptions
embodying these notions.

We can define the ‘information defect’ of the image in the isoplanatism-patch 4 as the
information loss per unit area in this part of the image as compared with the loss in an
aberration-free system of the same aperture. The measure of this information loss is

L log (N,/N), where

| 4 | Te 2 2
logN=%|A)ff log(1+ Leo[*] 77, '___) dudo (4-8)
4 |71 2w |2+ v |?
is the ‘mean information content’ (in the sense of § 3) for the actual system and the value of
log N,, the corresponding content for an ideal aberration-free system of the same aperture,
is obtained on writing 7, for 7 in (4-8).7
The optimum design from the information point of view is that which maximizes log N;

when the aperture is fixed in advance, this is equivalent to minimizing the information loss
log (Ny/N).

T (4+8) may be compared with Shannon’s result quoted above (§3-13).
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If object noise is small compared with image noise and | ¢, |?/| v,|2=1, we have, approxi-
mately,

2 2
log N =34 '” tog Lol 111" 4y s, (4-9)
7 | v, |
2] 2
tog N, = 1] 4| [ 1og L llram P 4y g, (410)
7 | Vs

and the information defect is

[A[lOgN Jf log

This equation, applicable when object noise is negligible and image structure is strong
compared with image noise, provides a measure of the ‘information quality’ of the optical
system in terms of its aperture and its ikonal function alone. It is only in this case that the
information quality is independent of ¢,, v,, v, and 7,.

dudv. (4-11)

For the image over the whole field F (again on the assumptions |y, |?2<|v,|2<| € |?)
we have

tog ¥ = [ [ dxdy f 1og‘€9'_l|2,,' dudo, (4-12)
Va
1 2
log N, =JUFdxdy§ L?log% dudv, (4-13)

wherenow 7 = 7(u,v; x,y) and, if vignetting is also allowed, 7, = 7,(%, v; %, ). Thus we obtain
To(ua Vs %Y )

the equation
log N ff dxdyff log (1, 0; x,y)

for the (statistical mean) information loss over the whole field due to the combined effects
of aberration and emulsion noise.
Although this approximate result is formally independent of the actual size of | v, |2, the

dudy (4-14)

presence of the noise 7, plays an essential part. If, for example, | v, |2<| v, |? equation (4-8)
takes the form

log N = |A|ff 1og(1+‘ Ol)dudv (4-15)

which as in § 3-3 shows that when noise associated with the image surface is negligible the
effect of aberrations is to reduce fidelity without destroying information.

It is of special interest that (4-14) involves only properties of the optical system and is
formally independent of the statistics of the presumed object set and of the noise and also
of the spread function of the image surface; and, consequently, camera designs can be
optimized (in the sense of passing the greatest statistical average amount of information)
over a wide range of object and film types by choosing the aberration balancing to minimize
(4-14). No analogous simplification occurs in connexion with fidelity optimization.

Chromatism

A detailed discussion of the effects of chromatism on image assessment would extend this
paper unduly, and we therefore only remark that in the polychromatic case the ikonal
function e(Au, Av; x,y) becomes e¢(Au, v; x,y; 1), where A is the wave-length of the light.
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The image assessments can then be made in terms of A-means weighted in accordance with
the expected spectral brightness distribution in the object set and the spectral sensitivity
of the receiver.
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